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DETONATION WAVE PROPAGATION

IN ROTATIONAL GAS FLOWS

UDC 534.222.2:533.6.011V. A. Levin and G. A. Skopina

This paper studies the propagation of detonation and shock waves in vortex gas flows, in which the
initial pressure, density, and velocity are generally functions of the coordinate — the distance from
the symmetry axis. Rotational axisymmetric flow having a transverse velocity component in addition
to a nonuniform longitudinal velocity is considered. The possibility of propagation of Chapman–
Jouguet detonation waves in rotating flows is analyzed. A necessary conditions for the existence of
a Chapman–Jouguet wave is obtained.
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Vorticity Change in Rotational Flows on a Discontinuity Surface. We consider an axisymmetric
rotational flow characterized by a transverse velocity component in addition to a nonuniform longitudinal velocity.
For an ideal perfect gas, such a flow is described by the following system of equations:
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Here u, v, and w are the corresponding velocity components in the cylindrical coordinates (x, r, ϕ), ρ is the density,
p is the pressure, and t is time.

The steady-state solution of system (1) is written as

u = u0(r), v0 = 0, w = w0(r), ρ = ρ0(r), p0 =
∫

ρ0w02

r
dr. (2)

In this case, the vortex vector 2ω = rot V has the components

ω0r = 0, ω0x =
1
2r
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2
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If, at the initial time, an explosion occurs on the symmetry axis, resulting in the formation of an explosive
shock wave, or the mixture is ignited to form a detonation wave, then a cylindrical shock or detonation wave (DW)
will propagate in the flow.
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We seek an expression for the vortex vector components immediately behind the discontinuity surface. For
this, we determine the quantities ∂u/∂r and ∂w/∂r immediately behind the jump at r = R(t) [R(t) is the law
of motion for the discontinuity surface]. Using Eqs. (1), we obtain expressions for these derivatives in terms of
postshock quantities and their derivatives with respect to time:
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In these formulas, the dot denotes differentiation of the corresponding quantities on the discontinuity surface with
respect to time; the subscript 1 refers to the postshock parameters.

For the vortex vector components behind the discontinuity, we obtain
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For the vortex vector components ahead of the shock, we have
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On the discontinuity surface, the tangential velocity components are continuous, i.e., u0 = u1 and w0 = w1.
Taking into account this circumstance and the law of conservation of mass at the shock, we obtain
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The rate of propagation of the discontinuity Ṙ = D.
From (3) it immediately follows that the quantities ωx/ρ and ωϕ/ρ are continuous in transition through the

discontinuity surface irrespective of whether the discontinuity is a shock wave or a detonation wave.
Thus, for the class of flows described, the law of conservation of the quantity ω/ρ is satisfied on the dis-

continuity surface although the quantities ω and ρ undergo a discontinuity. We note that in transition through
discontinuities, the flow vorticity increases in proportion to the density ratio. Therefore, for the same shock velocity,
the vorticity behind a shock wave is higher than that behind a DW.

This conclusion is also valid for plane shear flows.
Possibility of Propagation of Chapman–Jouguet DWs in Rotational Flows. We consider the

propagation of a divergent detonation wave in rotational gas flows with the initial parameter distribution (2). The
detonation wave is treated as a discontinuity surface on which combustion of a unit mass of gas leads to release of
heat Q, whose amount depends on the coordinate Q = Q(r). The flow behind the detonation front is described by
the Euler equations (1).

At the front of a Chapman–Jouguet DW, the following relations are satisfied [1]:
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q2
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Here the subscript J denotes the gas parameters and the Chapman–Jouguet wave velocity. The above system of
gas-dynamic equations, being hyperbolic, has three sets of characteristics, for which the corresponding characteristic
relations are satisfied [1]. In this case, if on a certain fairly smooth curve r0(t), the values of the functions satisfy
one of the characteristic relations but do not satisfy another characteristic relation, this curve is the envelope of the
corresponding set of characteristics of Eqs. (1) and the solution in its neighborhood should be sought in the form

p(r, t) = p0(t) + p1(t)
√

r0(t)− r + p2(t)(r0(t)− r) + p3(t)(r0(t)− r)3/2 + . . . (5)

(similarly for the remaining sought parameters) [1].
This approach was used to determine the conditions of existence of plane Chapman–Jouguet detonation

waves in external electric and magnetic fields [2] and to analyze the DW propagation in nonuniform media [3]. For
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arbitrary systems of quasilinear first-order partial equations, the conditions of existence were explored and the form
of the asymptotic expansion of the solution was determined in the neighborhood of the envelope of characteristic
surfaces on which initial function values [4] are specified. Convergence of the corresponding series is proved in [5].

Substituting expansions (5) into Eqs. (1), we obtain an infinite system of algebraic equations for the expansion
coefficients. The equations for the coefficients with subscripts 0, 1, and 2 have the form

ρ1(D − v0)− ρ0v1 = 0, p1 − ρ0(D − v0)v1 = 0, ρ0p1 − γp0ρ1 = 0,

u1(D − v0) = 0, w1(D − v0) = 0;
(6)
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2
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(7)

u2(D − v0) = −u̇0, w2(D − v0) = −ẇ0 − v0w0/r0.

Here differentiation with respect to t is denoted by a dot and D = ṙ0. Since the DW propagates in the Chapman–
Jouguet mode, D−v0 = a0, i.e., the characteristic relation is satisfied [1]. From this it follows that the determinants
of systems (6) and (7), and the systems of all subsequent approximations for the expansion coefficients vk, ρk, and
pk are equal to zero.

The expansion coefficients uk and wk are immediately found from known values of the previous coefficients,
and u1 = w1 = 0. Therefore, the series expansion for the velocities u and w has the form u = u0 + u2(ṙ0 − r)
+ u3(ṙ0 − r)3/2 + . . . .

For consistency of the linear system of equations (7) and all subsequent systems, it is necessary that the
extended determinant of the system be equal to zero. This condition implies the relation
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from which, using (6), we have
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Similar expressions can be obtained for the next expansion coefficients vk, pk, and ρk. Taking into account
the consistency relations, we can completely construct series of the indicated form and thus to determine the solution
of Eq. (1) in a certain neighborhood of the curve r = r0(t), which, in our case, is the neighborhood of the DW
propagating in the Chapman–Jouguet mode.

The desired solution exists if the following condition is satisfied:
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the equality sign determines satisfaction of the corresponding relation along the characteristic.
Inequality (8), together with the expressions for the parameters behind a Chapman–Jouguet detonation

wave (4), defines the necessary condition for the existence of a Chapman–Jouguet wave (p0 = pJ , v0 = vJ , a0 = aJ ,
ρ0 = ρJ , and D = DJ) which propagates in a medium with the distribution of the rotational flow parameters (2)
and a variable law of heat release Q = Q(r). Thus, the necessary condition for the existence of Chapman–Jouguet
waves has the form
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Let us consider the case where Q = const and qJ � 1. Then, D2
J = 2(γ2 − 1)Q, vJ = DJ/(γ + 1),

pJ = ρ0D2
J/(γ + 1), and ρJ = (γ + 1)ρ0/γ.

In this case, the necessary condition for the existence of Chapman–Jouguet waves has the form
1
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